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Asaninnovative imaging processing mode, radiomics can extract mi-
croscopic information from images for quantitative analysis. The se-
lected features and machine learning model can provide valuable
data for clinical decisions in heart disease. Up till now, several stud-
ies have demonstrated the role of radiomics in the accurate diagno-
sis and discrimination of heart disease as well as in the prognosis as-
sessment of the patient with heart disease. Cardiac Magnetic Res-
onance (CMR) displays a wide range of advantages, such as multi-
parameter, multi-sequence, multi-plane, and no radiation. CMR has
advantages in noninvasive assessment of structural and functional
heart disease. This paper reviews the workflow and related studies
on common heart disease based on CMR images in radiomics.
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1. Content

Radiomics is an emerging field for image analysis. It can
extract many invisible features by high-throughput comput-
ing and convert them into exploitable high-dimensional data.
The research subject of radiomics can be any pictures, and
the research process is orderly and controllable. Different
steps are required to reach that aim: image collection, image
segmentation, feature extraction, and modeling. The iden-
tified features based on the histogram as first order feature,
followed by shape feature, texture features and high order
features can be combined in clinic application and provide
disease diagnosis, adverse event prediction, survival analy-
sis, and prognosis assessment [1]. Over the years, radiomics
has attracted scholars worldwide. Because radiomics analysis
can acquire a lot of microscopic information, and it also can
be carried out simultaneously with other clinical procedures,
improving ipso facto the health care system by shortening the
study time of images by radiologists.

At present, radiomics has been successfully used in tu-
mors: considering lung cancer studies by extracting features
from ground glass nodules resulting in a confident classifica-
tion of diseases [2, 3]; also involved in the studies of hepa-
tocellular carcinoma (HCC) with promising advances in the
evaluation of hepatic diseases, determining immunologic in-
dex, treatment and prognostication [4-6]. Lately, it has been
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illustrated that microvascular invasion (MVI) represented an
independent factor for early recurrence and poor prognosis
of HCC [7, 8]. Many reports have covered that the mod-
els with MVI imaging characteristics were superior to the
single clinical index model [9, 10]. Those successful appli-
cations in tumors are the starting point to an extension of
radiomics to cardiac disease studies. Though in early years,
echocardiography based on radiomics was used to differen-
tiate diseases, such as amyloidosis [11]. Due to the poor re-
peatability of echocardiography, the relevant research failed
to make a breakthrough. Therefore, the application of ra-
diomics in heart disease may need to be based on other ex-
amination methods.

CMR is a no-radiation examination and can offer images
with multi-parameter, multi-sequence, and multi-plane. So
it becomes one of the most critical methods for noninvasive
assessment of structural and functional heart disease. For in-
stance, cine sequence is useful for evaluating the cardiac func-
tion, and the late gadolinium enhancement (LGE) sequence
helps to determine the existence of myocardial fibrosis. The
first pass perfusion can assess myocardial filling defect, while
the T2 weighted sequence detects the formation of myocar-
dial edema. CMR assists in the diagnosis and evaluates the
prognosis of heart disease. It has been shown in some stud-
ies that HCM patients with delayed enhancement on LGE se-
quence had a 3.4-fold increased risk of sudden cardiac death
and a 1.8-fold increase in all-cause mortality [12]. It was re-
ported that delayed enhancement on the LGE sequence may
be a potential matrix for ventricular arrhythmia in the DCM
population [13]. Kunze et al. [14] reported that in patients
with revascularization after myocardial infarction, the natu-
ral T1 signal value was correlated with peripheral monocyte
count (P = 0.024); so T1 signal value was related to systemic
inflammatory activity.

Recently, scholars have developed a strong interest in
radiomics based on CMR images (Table 1). Their studies
have achieved good results in myocardial infarction (MI), hy-
pertrophic cardiomyopathy (HCM), dilated cardiomyopathy
(DCM), and myocarditis. Therefore, the aim of this paper is
to review the workflow and related studies on common heart
disease based on CMR images in radiomics.
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Table 1. Selected studies using radiomics for the diagnosis of common heart disease.

Heart disease Year Publication Image substrate Sample size Important feature Performance
Myocardial infarction 2018 Gibbs et al. [38] LGE 76 Kurtosis and skewness AUC=0.73
2019 Androulakis et al. [24] LGE 154 Entropy HR =3.20
2018 Baessler et al. [27] Cine 180 Tetal, Perc.01, Var-iance, WavEnHH.s-3, AUC =0.93
and S(5,5) SumEntrp
Hypertrophic 2019 Neisius et al. [18] T1 mapping 232 Run-length non-enrichment [RLN]-135°, AUC = 0.89
[SRHGE]-135°, LBP-15, LBP-20, LBP-25,
and LBP-28
Cardiomyopathy (Myocar- 2018 Schofield et al. [42] Cine 216 mean value, standard deviation, entropy, kur- AUC = 0.89
dial hypertrophy) tosis, average positive pixel, and skewness
2018 Amano et al. [44] LGE 23 entropy LL AUC=0.72
2018 Cheng et al. [45] LGE 67 XO0_GLRLM_energy, XO_H_skewness and HR =0.78
X0_GLCM_cluster_tendency
2020 Alis et al. [30] LGE 64 GlemV1SumVarnc, GlemN3DifVarnc, AUC=0.92
GlemV1SumOfSgs,
GlemV5SumAverg,
GrlmVGLevNonUn,
GlemV5AngScMom, and Gab8H4Mag
2018 Baebler etal. [17] T1-weighted 62 GLevNonU, WavEnLL, and Fraction AUC =0.95
2020 Neisius et al. [47] T1 mapping/LGE 217 LRLGE-45°, LBP-22, LBP-16, homogeneity- C-index = 0.75
4, and LBP-1
Dilated cardiomyopathy 2018 Shao et al. [49] T1 mapping 74 P10, P25, P50, P75, P90, Mode , SD, Maxi- Accuracy = 0.85
mum, Mean, homogeneity, entropy and con-
trast
2019 Muthalaly etal. [51] LGE 130 entropy HR =35
Myocarditis 2018 Baessler et al. [37] T1 and T2 mapping 39 T2-rluni, T2 sum entropy, and T2- AUC=0.88
GLevNonU

2019 Baessler et al. [58]

T1 and T2 mapping 31

average T2 time and T2-GLNU AUC=0.76

LGE, late gadolinium enhancement; AUC, Area Under Curve; HR, hazard ratio; Local binary patterns; LBP (The gray value of the center pixel is taken as the

threshold, and the corresponding binary code is obtained to represent the local texture feature); X0 features (They are extracted from the original image).

2. Workflow of radiomics

The primary process of radiomics is meant to draw the re-
gion of interest (ROIs), obtain a large number of features, and
then filter the data to receive robust and informative optimal
features. Finally, model training and testing are carried out
(Fig. 1). The specific steps are designed as follows:

2.1 Image acquisition and preprocessing

Images acquired during traditional CMR (including short
and long axis, T1/T2 weighted, initial perfusion pass, and
late gadolinium enhancing sequences) are selected for ra-
diomics analysis. Recent studies tend to preferentially se-
lect late gadolinium enhancement and cine sequences images
[15, 16], while the use of the remaining sequences is gradually
increasing [17, 18]. Image preprocessing methods include
image resampling and data normalization. Image resampling
is to change the image voxel resolution to 1 mm? and the im-
age size to 256> voxels. It is used to eliminate the influence
of the heterogeneity of MRI scanner models (such as image
resolution, slice thickness, and patient position) [19]. Data
standardization refers to unifying the indicators of different
dimensional units into the same order of magnitude, elimi-
nating the influence of different dimensional units on the re-
sults. For example, the original image maximum pixel matrix
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value is 256, and 1 is the minimum; after processing, the im-
age value is comprised between an interval of 0-1 [20].

2.2 Image segmentation

Image segmentation is used to outline ROIs on images for
further feature selection and model building, and segmenta-
tion methods could be divided into three types consisting of
manual, semi-automatic, and fully automatic segmentation
algorithms [21]. Manual segmentation is time-costing but
could promise accurate and reliable outcomes. The automatic
algorithm could reduce the contour work for doctors dramat-
ically with high operation repeatability. However, the au-
tomatic segmentation algorithm is not as popularized as the
manual algorithm, and the accuracy of automatic segmenta-
tion is still to be improved. In CMR, the endocardium and
epicardium of the left ventricle and endocardium of the right
ventricle are often delineated on short-axis images, which de-
fine the boundaries of the left ventricular myocardium and
the two ventricular blood pools. After the selection of ROIs,
data can be extracted; data changes as ROIs change. There-
fore, most studies are carried out based on the automatize se-
lection and manually adjusting of ROIs, with better chances
of repeatability [21] (Fig. 2).
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Fig. 1. The basic process of radiomics and the factors influence the results.
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Fig. 2. On LGE images, we obtained the segmentation results of scar and myocardium of four different patients. The epicardial boundary was

blue, the endocardial boundary was red and the scar was yellow. There were two segmentation methods: manual segmentation (previous line) and automatic

segmentation (next row). Automatic image segmentation had better repeatability. Cited in [22].

2.3 Feature extraction and selection

Feature extraction is a crucial step for radiomics research.
Routine images are converted into plenty of quantitative
data. It is these quantitative features that combine image in-
formation with clinical practice. Radiomics features repre-
sent the geometry of ROIs, the distribution and the spatial
correlation of signal strength of voxels in ROIs. These fea-
tures can be divided into four categories:

a) first order features: derived from the ventricular con-
tour to define voxel intensity distribution in ROIs (the prin-
ciple is shown later), such as energy, kurtosis, skewness, and
entropy (Table 2). In 1948, Shannon et al. [23] initially pro-
posed that entropy could describe the quantitative informa-
tion relative to the communication system. In CMR protocol,
entropy is used to evaluate the heterogeneity of pixel signal
strength composed by a mixture of fibrotic tissue and nor-
mal myocardium. Based on this application, many studies
have reported the implication of entropy in the diagnosis and
prognosis of common heart disease [24].

b) shape features: determining the size and shape of
ROIs in two or three dimensions. They include not only
the conventional features like length, volume, and the sur-
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face of ROIs, but also features describing the overall shape of
ROIs, such as compactness, sphericity, and elongation (Ta-
ble 3). Shape features are independent of the gray intensity
of the image, so they are only acquired through the original
image [25].

c) texture features: describing the distribution and the
interaction of voxels in ROIs and using digital quantiza-
tion eigenvalues to describe the image information (Table 4).
Quantitative texture features can be relatively objective pa-
rameters for diagnosis or prognosis prediction in the clinic,
compared with conventional qualitative judgment based on a
medical picture. The first step of texture feature analysis is to
build the signal strength matrix. Each voxel within the ROIs
is assigned to a value accordingly to the different intensity,
and then a signal strength form is constructed to form a sig-
nal strength matrix. Next, we can directly calculate the signal
histogram of the signal strength matrix, which forms the first
order features mentioned above. However, the first order
features represent the overall signal distribution within ROIs.
More complex algorithms are needed to describe the corre-
lation between each adjacent voxel. Through the complex
calculation and reconstruction of the original signal strength
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Table 2. According to the signal strength matrix, the first order features based on histogram can be constructed by simple

arithmetic model. The abscissa is the intensity value of voxel signal, and the ordinate is the frequency of occurrence. The

statistical data obtained from the histogram are summarized, and the specific first order features are listed.

Intensity
Mean Energy Kurtosis
Range Entropy Maximum
Median Minimum Skewness
Variance Uniformity 10th percentile

Standard Deviation
Root Mean Squared (RMS)

Interquartile Range

Mean Absolute Deviation (MAD)

90th percentile
Robust Mean Absolute Deviation (rMAD)

matrix, a new matrix can be formed, such as gray level co-
occurrence matrix (GLCM), gray level run length matrix
(GLRLM), and gray level size zone matrix (GLSZM). GLCM
is basically constructed according to the frequency of differ-
ent signal strength pairs in the original signal strength ma-
trix. Corresponding measures such as contrast (local varia-
tion) and entropy (confusion) can then be calculated; these
features reflect the gray level changes of signal strength pairs
and the degree of confusion in ROIs [26]. GLRLM is con-
structed by the number of consecutive runs along the spec-
ified direction in the signal strength matrix. It can evalu-
ate the spatial correlation of any number of voxels (not just
pairs). For example, run entropy reflects the degree of con-
fusion in the gray distribution of the stroke length (higher
value is more chaotic); high gray level run emphasis measures
the distribution of higher gray values (higher value results
in a greater concentration of higher gray values). GLSZM
is reconstructed by quantifying the number of voxels within
the same signal strength in the image, such as gray level non
uniformity and gray level variance. Many scholars have con-
firmed the value of Gray level non uniformity (GLN) in the
diagnosis and differential diagnosis of myocarditis [27].

d) high order feature: filter or high order image pa-
rameters are added to first order or texture features, such
as Wavelet, Laplace of Gaussian, and autoregressive model.
There may be redundant features or features not closely re-
lated to the results [28].

The number of extracted features can reach thousands.
So feature selection (such as principal component analysis or
clustering) will identify and delete redundant and unstable
image features [29]. It will avoid the overfitting of the model.
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24 Modeling and validation

The purpose of radiomics is to develop a model for di-
agnosis, prognosis, and treatment evaluation of medical dis-
eases. A radiomics model is developed using specific classi-
fiers for model training. There are kinds of classifiers, in-
cluding random forest (RF), support vector machine (SVM),
naive Bayes, and k-nearest neighbor method (K-NN) [30].
RF is composed of many decision trees; each decision tree
comprises random samples and random features. The fi-
nal judgment will be made through the summary of all the
decision trees’ results [31]. Its advantage is that there will
be no overfitting phenomenon if there are enough decision
trees, while too many trees will slow down the algorithm
speed. SVM uses a separation hyperplane to partition the
training set correctly. It can tolerate some wrong samples in
the boundaries, thus improving the robustness and general-
ization of the model [32]. Naive Bayes is based on probability
theory and assumes that each feature is independent and suit-
able for small sample classification. The principle of K-NN is
to take the k training samples nearest to the test samples. The
category with the most frequent occurrence in these k sam-
ples is the classification result. The disadvantage of K-NN is
that it has higher requirements for the balance of sample cat-
egories.

All these classifiers can be used for modeling, but the clas-
sifier which shows the best performance is preferable. Train-
ing sets, verification sets and testing sets are very important
in the process of radiomics analysis. Generally, the data is
distributed into several groups: training sets used to fit the
model, and verification sets used to adjust parameters of the
model but also for preliminary evaluation of the model, while
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Table 3. The left and right ventricular blood pools (red, yellow) and left ventricular myocardium (green) are segmented. The

shape features of radiomics can be deduced from the contour of left and right ventricle, and the specific shape features can be

listed.
2D 3D
Mesh Surface Mesh Volume

Pixel Surface

Perimeter

Perimeter to Surface ratio
Sphericity

Spherical Disproportion

Maximum 2D diameter

Voxel Volume

Surface Area

Surface Area to Volume ratio
Sphericity

Compactness

Spherical Disproportion

Major Axis Length Maximum 3D diameter
Minor Axis Length Major Axis Length
Elongation Minor Axis Length
Least Axis Length
Elongation
Flatness

the testing sets used to evaluate the final generalization ef-
fect of the model. For instance, K-NN was used to iden-
tify whether HCM patients occur ventricular arrhythmia (the
Area Under Curve (AUC) = 0.92), but the research lacked
testing sets. Hence, it was impossible to evaluate the general-
ization effect of the model, and further research was needed
[30]. The model is representative only if the sample size
is large enough; experts propose k-fold cross-validation for
the defect that there are insufficient clinical research samples
[33]. The training sets are split into k samples, and one of
them is randomly selected as the verification sample, and the
remaining k-1 is the training sample. The process is repeated
k times to obtain the best performance. Usually, k is accept-
able for sampling when its value is between 5 and 10. If k is
less than 5, the underfitting problem could occur [34].

3. Progress of radiomics applying to heart
disease

3.1 Application of radiomics in myocardial infarction

MI is one of the most serious cardiovascular diseases
threatening human health, and the main pathophysiological
mechanism is myocardial ischemia and necrosis due to coro-
nary artery stenosis and occlusion [35]. Patients have the risk
of ventricular arrhythmia and poor left ventricular remodel-
ing [36]. Baessler etal. [37] studied the efficacy of texture fea-
tures in diagnosing subacute and chronic myocardial infarc-
tion on CMR cine images. The results showed that the five
texture features Tetal, Perc.01, Variance, Wavenhh.s-3, and
S (5,5) SumEntrp had statistical significance in differentiat-
ing infarcted myocardium from normal myocardium. In the
multiple Logistic regression models, diagnostic accuracy of
MI was excellent (AUC = 0.93). Gibbs et al. [38] explored the
relationship between the features based on the Laplacian of a
Gaussian filter and scar heterogeneity and arrhythmia events.
The results showed that the kurtosis (P%40.005) and skewness
(P¥40.046) of MI patients with arrhythmia events were sig-
nificantly higher than those without arrhythmia events. An-
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droulakis et al. [24] used the entropy based on CMR-LGE
images to measure scar heterogeneity parameters in patients
with myocardial infarction and the entire left ventricular my-
ocardium. In the multivariate analysis results, the risk of ven-
tricular arrhythmia increased by 1.9-fold for every unit of en-
tropy increase in scar tissue (hazard ratio: 1.9; 95% confi-
dence interval: 1.0-3.5; P = 0.042), indicating that entropy
may be related to the fibrous scar causing the arrhythmia.
For each unit increase in entropy throughout the left ven-
tricle, the risk of death increased 3.2 times (hazard ratio: 3.2;
95% confidence interval: 1.1-9.9; P = 0.038), suggesting that
the entropy of the entire left ventricle may reflect the fibrosis
pattern associated with poor cardiac remodeling. However,
there was no statistically significant difference in the patient’s
entropy with or without ventricular arrhythmia (P = 0.07)
in this study. Some scholars analyzed that it may be due to
the loss of the spatial relationship between pixels and original
pixels when the intensity signal value was input. So entropy
could not be directly applied to image data analysis [39].

3.2 Application of radiomics in hypertrophic cardiomyopathy

HCM is the most common primary cardiomyopathy, with
a prevalence of around 1/500. The diagnostic criteria for
HCM are end-diastolic left ventricular wall thickness > 15
mm, or the patient with a family history of HCM in whose
end-diastolic left ventricular wall thickness > 13 mm and
excluding hypertensive cardiomyopathy, valvular heart dis-
ease, and other cardiac diseases secondary to ventricular wall
thickening [40]. Among the patients with genetically pos-
itive HCM, 23% had hypertension simultaneously [41], so
the differential diagnosis of HCM and hypertensive heart dis-
ease is particularly important in clinical diagnosis and treat-
ment. Neisius et al. [18] analyzed the texture of the images
with native scanning T1-mapping and showed that these six
features, namely, Run-length non-enrichment [RLN]-135°,
[SRHGE]-135°, LBP-15, LBP-20, LBP-25, and LBP-28, can
differentiate HCM and hypertensive heart disease, with the

33



Table 4. Texture features describe the relationship of signal strength distribution between adjacent voxels. It is a new signal

strength matrix reconstructed by different arithmetic methods according to the original signal strength matrix.

Texture Features

Gray Level
Co-occurrence
Matrix (GLCM)
Autocorrelation
Average

Cluster
Contrast
Entropy
Variance
Energy
Informational

Measure of Cor-
relation (IMC)

Inverse  Differ-
ence Moment
(IDM)

Maximal Corre-

lation Coefficient
(MCQ)

Maximum Proba-
bility

Sum of Squares

Gray Level Size Zone Matrix
(GLSZM)

Empbhasis

Gray Level Non-Uniformity
(GLN)
Gray Level Non-Uniformity

Normalized (GLNN)

Size-Zone Non-Uniformity
(SZN)
Zone Percentage (ZP)

Gray Level Variance (GLV)
Zone Variance (ZV)
Zone Entropy (ZE)

Low Gray Level Zone Emphasis
(LGLZE)

High Gray Level Zone Emphasis
(HGLZE)

Small Area Low Gray Level Em-
phasis (SALGLE)

Small Area High Gray Level
Emphasis (SAHGLE)

Large Area Low Gray Level Em-
phasis (LALGLE)

Large Area High Gray Level
Emphasis (LAHGLE)

Gray Level Run Length Matrix
(GLRLM)

Run Emphasis

Gray Level Non-Uniformity
(GLN)
Gray Level
Normalized (GLNN)

Run Length Non-Uniformity
(RLN)

Run Length Non-Uniformity
Normalized (RLNN)

Run Percentage (RP)

Gray Level Variance (GLV)

Dependence Variance (DV)

Run Variance (RV) Dependence Entropy (DE)

Run Entropy (RE) Low Gray Level Emphasis
(LGLE)

Low Gray Level Run Emphasis  High Gray Level Emphasis

(LGLRE)

High Gray Level Run Emphasis
(HGLRE)

Short Run Low Gray Level Em-
phasis (SRLGLE)

Short Run High Gray Level Em-
phasis (SRHGLE)

Long Run Low Gray Level Em-
phasis (LRLGLE)

Long Run High Gray Level Em-
phasis (LRHGLE)

(HGLE)

Small Dependence Low Gray
Level Emphasis (SDLGLE)
Small Dependence High Gray
Level Emphasis (SDHGLE)
Large Dependence Low Gray
Level Emphasis (LDLGLE)
Large Dependence High Gray
Level Emphasis (LDHGLE)

Gray Level Dependence Matrix ~ Neighbouring ~ Gray
(GLDM) Tone Difference
Matrix (NGTDM)
Small Dependence Emphasis  Coarseness
(SDE)
Large Dependence Emphasis  Contrast
(LDE)
Non-Uniformity =~ Gray Level Non-Uniformity  Busyness
(GLN)
Dependence Non-Uniformity = Complexity
(DN)
Dependence Non-Uniformity  Strength
Normalized (DNN)
Gray Level Variance (GLV)

maximum diagnostic accuracy of 86.2%. Schofield et al. [42]
tried to use these six first order features of the cine images to
distinguish left ventricular hypertrophy causes on the unen-
hanced cine sequence images, which were mean value, stan-
dard deviation, entropy, kurtosis, average positive pixel, and
skewness. The results showed that compared with the nor-
mal control group, HCM and non-compaction of the ven-
tricular myocardium had the best performance, and the six
texture features had significant statistical significance (P <
0.001). In aortic stenosis disease, except entropy, the re-
maining five texture features had significant statistical sig-
nificance (P < 0.001). In hypertensive heart disease, ex-
cept for skewness, the remaining five texture features were
statistically significant. In the differential diagnosis of dis-
ease, these six texture features were statistically significant
in the differential diagnosis of non-compaction of the ven-
tricular myocardium and aortic stenosis, and the better result
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appeared between hypertrophic cardiomyopathy and aortic
stenosis disease (AUC = 0.89). These studies demonstrated
that radiomics could assist clinicians in the differential diag-
nosis of HCM and other diseases that cause left ventricular
hypertrophy.

Most patients with HCM have a good prognosis, but a
small number of patients have adverse cardiac events, such
as adverse cardiac remodeling, malignant arrhythmia, sud-
den cardiac death. Some scholars believe that a key mecha-
nism of adverse events is myocardial fibrosis. Since Choud-
hury et al. [43] first reported the evaluation of HCM fibro-
sis by delayed enhancement of LGE sequence in 2002, more
and more studies have confirmed that the existence and de-
gree of delayed enhancement were related to the occurrence
of adverse cardiac events. In recent years, many studies have
begun to explore the relationship between CMR-LGE tex-
ture features and cardiac adverse events. As far as we know,
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Amano et al. [44] reported, for the first time, the corre-
lation between CMR-LGE image texture features of HCM
and ventricular arrhythmia. The results showed that among
the four texture features, the entropy LL of patients with ar-
rhythmia was significantly smaller than that of patients with-
out arrhythmia (P = 0.0058), the area under the curve of en-
tropy LL was 0.72, and the area under the curve of delayed
enhancement was 0.96. Although entropy LL was weaker
than delayed enhancement in distinguishing HCM from ven-
tricular tachycardia in this study, entropy LL was indeed a
discriminating factor for HCM with or without ventricular
tachycardia. Unlike previous scholars, Cheng et al. [45] mag-
nified the focus from several specific texture features to 90
features extracted from images and studied the correlation
between LGE-CMR texture features and poor prognosis of
HCM patients with systolic dysfunction. The results showed
that the higher XO_GLRLM_energy, lower X0_H_skewness
and lower X0O_GLCM_cluster_tendency were positively cor-
related with adverse events (P < 0.05), suggesting that in-
creased myocardial heterogeneity was associated with ad-
verse cardiac events in HCM patients. Alis ef al. [30] pro-
posed whether texture analysis based on CMR-LGE image
can identify ventricular arrhythmia in HCM patients. The
results showed that ventricular arrhythmias in HCM can be
identified using a K-NN classifier with 94% diagnostic ac-
curacy (AUC = 0.92). This study’s highlight is not limited
to a few texture features, but also through the method of
radiomics to screen features and establish a model to eval-
uate the correlation between radiomics and cardiac adverse
events. However, due to the small sample size, the research
trains and verifies all the data without external testing, so it
is impossible to evaluate generalization efficiency.

HCM is usually found in youth, so some patients need to
have multiple CMR examinations during long-term follow-
up. Gadolinium-based contrast agents are the most com-
mon contrast mediums used in CMR examination. However,
gadolinium is a contraindication for patients with renal fail-
ure, and it will cause nephrogenic systemic fibrosis. This is
because after receiving gadolinium-based contrast agents in
patients with renal function impairment, the clearance rate of
contrast medium in vivo is slowed down, and Gd®+ is more
easily released from the chelate, which promotes the produc-
tion of chemokines and growth factors by macrophages and
monocytes; it can also stimulate the production of hyaluronic
acid, fibronectin, and types I and III collagens. Therefore,
patients with impaired renal function are prone to nephro-
genic systemic fibrosis [46]. Accordingly, Baebler et al. [17]
used texture analysis on T1 weighted images of HCM patients
without contrast to identify the differences between HCM
and normal myocardium. Results showed that the four tex-
ture features were gray level non -uniformity (P < 0.001),
energy of wavelet coefficients in low frequency sub-bands (P
< 0.001), fraction (P < 0.001) and sum average (P = 0.007),
which provided a new parameter for the evaluation of HCM
by contrast free T1 weighted images. Neisius et al. [47]
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used texture analysis on T1 mapping images of HCM pa-
tients to identify a delayed enhancement on LGE sequences.
The results showed that the five texture features, LRLGE-
45°, LBP-22, LBP-16, homogeneity-4, and LBP-1, had the
greatest contribution value to the DTE classifier. In the DTE
classifier, the c-index of the training set was 0.75, and that
of the test set was 0.74. The learning DTE classifier could
identify some LGE negative patients, suggesting that about
1/3 of LGE negative patients could avoid using gadolinium-
based contrast agents, consistent with nearly 50% of HCM pa-
tients without delayed enhancement in previous studies [48],
that may contribute unnecessarily to the use of contrast me-
diain the future. The above studies show that radiomics plays
an important role in diagnosing, differential diagnosis, and
prognosis evaluation of HCM, which provides a new tech-
nology and direction for future HCM research.

3.3 Application of radiomics in dilated cardiomyopathy

The etiology of DCM can be either primary or secondary.
This disease is characterized by left ventricular or right ven-
tricular dilatation with contractile dysfunction. The diag-
nosis of DCM remains a major clinical challenge because of
the exclusion of ischemic cardiomyopathy and other non-
ischemic cardiomyopathies that may produce a pattern simi-
lar to the left ventricular remodeling. Shao et al. [49] studied
whether texture analysis on the T1-mapping image of SVM
was helpful to DCM diagnosis. The results showed that the
SVM classifier’s diagnostic accuracy based on a meaningful
histogram of the T1-mapping MRI image and GLCM was
85%. This method may provide an auxiliary tool for objective
quantitative evaluation of clinical DCM diagnosis. Accurate
risk stratification of sudden cardiac death is essential for the
prognosis of patients with DCM.

The accuracy of left ventricular ejection fraction (LVEF)
used to be a risk stratification index is limited and is greatly
affected by the operator. Therefore, scholars hope to explore
a new parameter to assist the risk stratification assessment
of DCM. Myocardial fibrosis in patients with DCM provides
a material basis for ventricular arrhythmia [50]. Myocar-
dial heterogeneity is formed by the coexistence of different
types and degrees of fibrous tissue with viable myocardium.
Muthalaly et al. [51] used radiomics methods and hypothe-
sized that the left ventricular myocardium heterogeneity was
considerable in DCM patients requiring primary prevention
by CMR assessment; that is, the entropy value was enormous,
and the risk of ventricular arrhythmia was also greater. It
showed that when judging whether DCM patients had an ar-
rhythmia, left ventricular entropy was statistically significant
in univariate factor analysis and multivariate factor analysis
(P < 0.05), suggesting that entropy was an independent pre-
dictor of ventricular arrhythmia in DCM patients risk fac-
tors. After 2.4 years of follow-up, no arrhythmia occurred
in patients with LVEF < 35% and left ventricular entropy
< 4.46, indicating that left ventricular entropy can provide a
stable and straightforward risk assessment method for DCM
patients. At present, the incidence rate of radiomics studies
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in DCM is still low, probably because the DCM diagnosis is
not clear enough, the incidence of DCM is low, and the DCM
wall is thin, and it is not easy to draw ROls.

34 The application of radiomics in myocarditis

The viral infection is the most common cause of my-
ocarditis, with an incidence rate of 20/10000 and a mor-
tality rate of 4.8/100000 [52, 53]. The disease pathological
changes comprise myocardial edema, degeneration, necrosis,
and lymphocyte infiltration [54, 55]. Myocarditis is asymp-
tomatic in mild cases, but severe arrhythmia, acute cardiac
insufficiency, and sudden cardiac death have been noticed in
some cases. The “gold standard” for diagnosing myocarditis
is the endomyocardial biopsy, but the examination is inva-
sive and has low sensitivity, so it is not widely used in clin-
ical practice [56, 57]. CMR provides specific value for non-
invasive diagnosis of myocarditis. Noninvasive diagnosis of
myocarditis is still one of the challenging problems in clin-
ical practice. Baessler et al. [27] analyzed the T1 and T2
mapping images of patients with acute infarct myocarditis
similar to acute infarct myocarditis using radiomics. They
found that these three texture features were statistically dif-
ferent between patients with positive and negative endocar-
dial biopsy (P < 0.05), which were T2-rluni, T2 sum en-
tropy, and T2-GLevNonU. In the classification model com-
posed of two run-length matrix features (T2-rluni and T2-
GLevNonU), the AUC was 0.88, so these two features could
well diagnose patients with acute infarct myocarditis. Be-
sides, Baessler et al. [58] evaluated the diagnostic value of
imaging radiomics parameters for myocarditis in heart fail-
ure patients. They found that the combination of the two
features of average T2 time and T2-GLNU had the highest di-
agnostic performance in patients with acute heart failure my-
ocarditis (AUC = 0.76, 95% confidence interval: 0.43-0.95),
the combination of T2_kurtosis and T1-GLevNonU in my-
ocarditis patients with chronic heart failure had the highest
diagnostic performance (AUC = 0.85, 95% confidence inter-
val: 0.57-0.90). In patients with acute and chronic heart fail-
ure with myocarditis, the difference in texture features with
the best performance may reflect the two diseases different
pathological changes. In the diagnosis of myocarditis, the tex-
ture features based on T2 images perform well, mainly be-
cause myocarditis is closely related to myocardial edema. So
the T2 sequence maybe the best choice to observe myocardial
water content of CMR. In summary, it has particular poten-
tial research value in the diagnosis and differential diagnosis
of myocarditis.

4. Summary of radiomics of
cardiomyopathies

In summary, radiomics based on CMR has made certain
research progress in common heart disease such as MI, HCM,
DCM, and myocarditis. However, it is traditional parameters
that are still used as references in clinical decision-making,
not radiomics. So the application value of radiomics is still
not well defined. We may need to solve the following prob-
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lems: Firstly, CMR scan time is long, and the time resolu-
tion is not as good as ultrasound; CMR is not suitable for
some special populations, such as claustrophobia and elderly
and frail patients. Secondly, it is difficult to obtain enough
heart disease in a single-center, suggesting that radiomics re-
search may require multicenter cooperation to study heart
disease. Finally, for the sake of repeatability and compara-
bility of radiomics research, it is essential to use standardized
imaging protocols. However, radiomics is still in the embry-
onic stage and mainly focuses on texture features in the study
of heart disease. At present, studies on feature extraction,
feature selection and classifier training of heart disease are
not enough. Therefore, to achieve better clinical decision-
making, we should overcome these challenges and perform
further studies to prove the role of radiomics in heart disease.
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